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Guide to Indirect Proofs 
 

This handout explores issues specific to the two types of indirect proofs we've explored so far 
(proofs by contradiction and contrapositive), some common techniques that arise when 
working with them, and some recurring pitfalls to avoid. 

 

Proof by Contrapositive 
Many important mathematical statements have the following form: 

If P is true, then Q is true. 

These statements are called implications. You can prove them in many ways, one of which is 
the proof by contrapositive. In a proof by contrapositive, instead of proving the original impli-
cation, you'll prove a different implication. Specifically, instead of proving the statement 

   If P is true, then Q is true   (1) 

you'll prove the statement 

   If Q is false, then P is false.   (2) 

Statement (2) is called the contrapositive of statement (1), hence “proof by contrapositive.” 

When writing a proof by contrapositive, we recommend structuring the proof as follows: 

1. Start off by announcing that you're going to prove the contrapositive of the statement 
you wish to prove. For example, you could say something like “We will prove the con-
trapositive of this statement, namely, that ...” or “By contrapositive; we will instead 
prove that …” 

Don't skip this step! It's important for several reasons. First, it communicates to the reader 
what they should expect in the proof: you're not going to prove the original statement, and 
instead that you're going to prove the contrapositive. Second, it forces you to write out the 
contrapositive of the statement that you're trying to prove, reducing the likelihood that you 
accidentally take the contrapositive incorrectly. 

2. Using any proof technique you'd like, prove the contrapositive of the statement. Often, 
you'll prove the contrapositive of the statement using a direct proof. Overall, this 
means that if you want to prove the statement “If P is true, then Q is true,” you'll start 
off by assuming that Q is false and will prove that P is false. 

Proof by contrapositive is useful for proving implications, but can also be used to prove certain 
other results that don't necessarily look like implications. For example, consider the statement 

All wizards can perform magic 

This statement doesn't look like an implication, but it can actually be thought of as one. Spe-
cifically, it's equivalent to the statement 

For any choice of x, if x is a wizard, then x can perform magic. 
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Now, it's clearer that there's an implication here, so if we chose to do so, we could prove it 
using a proof by contrapositive. That proof might start out like this: 

Proof: We will prove that if x is a wizard, then x can perform magic. To do so, we will instead 
prove the contrapositive of this statement, namely that if x cannot perform magic, then x 
is not a wizard. … 

Similarly, consider this statement: 

No Death Eater is trustworthy. 

This again doesn't immediately appear to be an implication, but it can be rewritten as one. 
Namely, it's equivalent to the statement 

For any choice of x, if x is a Death Eater, then x is not trustworthy. 

From here, it's clearer what the implication is. We'll leave it as an exercise to determine what 

the contrapositive of this statement actually is and whether this statement is true.        

 

Proof by Contradiction 
One of the most common and most powerful forms of indirect proof is the proof by contradic-
tion. In a proof by contradiction, to prove that some statement X is true, you instead assume 
that X is false, then proceed to derive an impossible statement (a contradiction). This means 
that X cannot be false, and therefore X has to be true. We recommend writing proofs by con-
tradiction along these lines: 

1. Start off by saying that you're going to write a proof by contradiction. For example, you 
could write “Assume for the sake of contradiction that ...” or “By contradiction; assume 
that ….” Then, explicitly write out the negation of the statement you're trying to prove. 

As with a proof by contrapositive, it's important to actually write out the negation of what you 
want to prove. This communicates to the reader what assumptions you're making and forces 
you to put into writing what you believe the negation of the statement is. It therefore makes 
the proof easier to read and reduces the chances that you accidentally take the negation of the 
statement incorrectly. 

2. Starting with your assumption from part (1), proceed to conclude something impossi-
ble, such as that 1 = 0, that a number is both even and odd, that something belongs to 
the empty set, that |S| = |℘(S)|, etc. 

3. State that you've reached a contradiction and, if it's not obvious, explain why it's a log-
ical contradiction. This explains to the reader why your assumption couldn't possibly 
be right. 

4. Conclude the proof. I commonly say something to the effect of “Therefore, our assump-
tion must have been wrong, so […].” You can put whatever you'd like here as long as it 
explains why the contradiction you arrived at actually shows that the original assump-
tion was incorrect. 
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One of the trickiest parts of writing a proof by contradiction is properly assuming the opposite 
of what you want to prove. When we talk about first-order logic later in a few weeks, you'll 
see several techniques for negating statements and you'll get a better feel for how to do this 
in general. For now, though, we recommend that you use the following set of rules and your 
own intuition. 
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Here are some very common types of statements and their negations. 

If you want to prove this by contradiction... …assume this. 

All P's are Q's. Some P is not a Q. 

No P's are Q's. Some P is a Q. 

Some P's are Q's. All P's are not Q's. 

Some P is not a Q. All P's are Q's. 

If P is true, then Q is true. P is true, but Q is not true. 

P is true and Q is true. P is false, or Q is false, or both are false. 

P is true or Q is true, or both are true. P is false and Q is false. 

 


